MATH 5061 Problem Set 5¹ Due date: Apr 15, 2020

Problems: (Please either type up your assignment or scan a copy of your written assignment into ONE PDF file and send it to me by email on/before the due date. Please remember to write down your name and SID. Questions marked with a † is optional.)

- 1. Let (M, g) be a Riemannian manifold. Fix $p \in M$.
 - (a) Suppose the exponential map \exp_p is defined on the whole tangent space T_pM . Prove that for any $q \in M$, there exists a geodesic γ joining p to q such that $L(\gamma)$ realized the Riemannian distance $\rho(p,q)$ between p and q. Use this to show that (M, ρ) is complete as a metric space.
 - (b) Prove the converse of (a), i.e. suppose (M, ρ) is a complete metric space, show that \exp_p is well-defined on $T_p M$.
- 2. Let $\gamma(s,t) = \gamma_s(t) : [0,1] \to M$, $s \in (-\epsilon,\epsilon)$, be a 1-parameter family of smooth curves in a Riemannian manifold (M,g). Denote $V(t) := \frac{\partial}{\partial s}|_{s=0} \gamma$ as the variational field along γ_0 . Recall that the energy of the curve γ_s is defined by

$$E(\gamma_s) := \int_0^1 \|\gamma'_s(t)\|_g^2 \, dt.$$

(a) Prove that first variation formula for energy, i.e.

$$\frac{1}{2} \left. \frac{d}{ds} \right|_{s=0} E(\gamma_s) = \left. g(\gamma_0'(t), V(t)) \right|_{t=0}^{t=1} + \int_0^1 g(D_{\frac{\partial}{\partial t}} \gamma_0'(t), V(t)) \right. dt.$$

(b) If γ_s is a geodesic for all s, show that the variation field V is a Jacobi field, i.e. V(t) satisfies the Jacobi field equation:

$$D_{\frac{\partial}{\partial t}} D_{\frac{\partial}{\partial t}} V - R(\gamma_0', V) \gamma_0 = 0.$$

- (c) Prove that every Jacobi field V along γ_0 arises from a 1-parameter family of geodesics as in (b).
- 3. Let $f: M \to \mathbb{R}$ be a smooth function defined on a Riemannian manifold (M^{m+1}, g) . Denote $\Sigma := f^{-1}(a)$ where a is a regular value of f. Show that the mean curvature H, with respect to the unit normal $N = -\frac{\nabla f}{|\nabla f|}$, of the hypersurface Σ is given by $H = \operatorname{div} N$.
- 4. Consider the smooth map $F : \mathbb{R}^2 \to \mathbb{R}^4$ defined by

$$F(u, v) = (\cos u, \sin u, \cos v, \sin v).$$

- (a) Show that F is an isometric immersion (with respect to the flat metrics).
- (b) Prove that the image of F lies inside the round 3-sphere $\mathbb{S}^3 := \{x \in \mathbb{R}^4 \mid |x|^2 = 2\}$, and $\Sigma = F(\mathbb{R}^2)$ is a minimal immersion into \mathbb{S}^3 , equipped with the induced metric from \mathbb{R}^4 .
- 5. Let (M, g) be a complete Riemannian manifold with non-positive sectional curvature everywhere. Suppose γ and σ are two geodesics joining the same end points, and γ is homotopic to σ (i.e. there exists a family of curves $\gamma_s, s \in [0, 1]$, joining the same end points such that $\gamma_0 = \gamma$ and $\gamma_1 = \sigma$). Prove that γ is just a reparametrization of σ .

¹Last revised on April 15, 2020